Identifying Nuclear Reactions

Before being able to identify nuclear reactions you must first...

Remember what the definition and/or the symbol, mass, and charge number are for each of these particles:

- Nucleon
- Neutron
- Proton
- Electron
- Positron
- Alpha particle
- Beta particle
- Gamma particle

What would the symbol, mass, and charge number be for a hydrogen nucleus?

***Neutrinos and antineutrinos are subatomic particles that we are NOT concerned with in nuclear chemistry since we are not concerned with conserving momentum and spin.

Recall all the types of nuclear reactions possible and their definitions:

- Fission
- Fusion
- Transmutation
- Decay
 - o Alpha decay
 - o Beta decay
 - Positron decay
 - Electron capture

When identifying nuclear reactions ask yourself these questions

	Questions to ask yourself and the possible answers	Conclusions or Next Step
1a	How many nuclides or small particles are on the left side of the reaction? One	The reaction with be a type of decay, go to question 5
1b	How many nuclides or small particles are on the left side of the reaction? More than one	Go to question 2
2a	Is one of the nuclides on the left side of the reaction an electron? Yes	This reaction is most likely an electron capture
2b	Is one of the nuclides on the left side of the reaction an electron? No	The reaction with not be a type of decay, go to question 3
3a	Is a heavy nuclei spliting into two lighter nuclei or are lighter nuclei coming together to make a heavier nuclei? A heavy nuclei is spliting into two lighter nuclei	This reaction is most likely a fission reaction
3b	Is a heavy nuclei spliting into two lighter nuclei or are lighter nuclei coming together to make a heavier nuclei? Lighter nuclei are coming together to make a heavier nuclei	Go to question 4
4a	Are the nuclei on the left side of the reaction about the same mass or is one substantially heavier than the other? They are about the same mass	This reaction is most likely a fussion reaction
4b	Are the nuclei on the left side of the reaction about the same mass or is one substantially heavier than the other? One is substantially heavier than the other	This reaction is most likely a transmutation
5a	What is the small particle that is produced in the reaction? Alpha particle	This reaction is most likely an alpha decay
5b	What is the small particle that is produced in the reaction? Beta - particle	This reaction is most likely a beta decay
5c	What is the small particle that is produced in the reaction? Beta + particle	This reaction is most likely a positron decay

Now, lets practice!

Identify each of the following nuclear reactions.

$$^{235}_{92}\text{U} \ + \ ^{1}_{0}\text{n} \ \rightarrow \ ^{80}_{38}\text{Sr} \ + \ ^{153}_{54}\text{Xe} \ + \ 3 \ ^{1}_{0}\text{n}$$

$$^{13}_{7}\text{N} \quad \rightarrow \quad ^{13}_{6}\text{C} \quad + \quad ^{0}_{1}\text{e}$$

$$^{241}_{95}\text{Am} \rightarrow ^{237}_{93}\text{Np} + ^{4}_{2}\text{He}$$

$$^2_1 H$$
 + $^2_1 H$ \rightarrow $^3_2 He$ + $^1_0 n$

$$^{14}_{7}N + ^{4}_{2}\alpha \rightarrow ^{17}_{8}O + ^{1}_{1}p$$

$$^{14}_{6}\text{C} \rightarrow ^{14}_{7}\text{N} + ^{0}_{-1}\text{e}$$

$$^{97}_{42}\text{Mo} + {^{2}_{1}\text{H}} \rightarrow {^{97}_{43}\text{Tc}} + {^{2}_{0}\text{n}}$$

$$^{26}_{13} Al + ^{0}_{-1} e \rightarrow ^{26}_{12} Mg + ^{0}_{0} \gamma$$

$$^{58}_{26}$$
Fe + $^{1}_{0}$ n \rightarrow $^{60}_{27}$ Co + $^{1}_{0}$ e

$$^{2}_{1}H + ^{3}_{1}H \rightarrow ^{4}_{2}He + ^{1}_{0}n$$

$$^{210}_{~84}\text{Po} ~\rightarrow~ ^{206}_{~82}\text{Pb} ~+~ ^{4}_{2}\text{He}$$

$$^{235}_{92}$$
U + $^{1}_{0}$ n \rightarrow $^{135}_{52}$ Te + $^{100}_{40}$ Zr + $^{1}_{0}$ n

$$^{227}_{89}\text{Ac} \rightarrow ^{227}_{90}\text{Th} + ^{0}_{-1}\text{e}$$