

Kinetics Practice – Supplemental Worksheet KEY

Determining reaction mechanism based on initial rate data

- 1. A reaction has the experimental rate law, rate = $k[A]^2$.
 - a. How will the rate change if the concentration of a is tripled?

If rate₁= $k[A]^2$, then rate₂= $k[3A]^2=3^2 k[A]^2=9^* k[A]^2=9^*$ rate₁. So the rate would be 9 times faster.

b. How will the rate change if the concentration of A is halved?

If rate₁=k[A]², then rate₂=k[$\frac{1}{2}$ A]²= $(\frac{1}{2})^{2*}$ k[A]²= $\frac{1}{4}*$ k[A]²= $\frac{1}{4}*$ rate₁. So the rate would decrease. It would be a fourth of the original rate.

- 2. A reaction has the experimental rate law, rate = k[A].
 - a. How will the rate change if the concentration of a is tripled?

If rate₁=k[A], then rate₂=k[3A]=3*k[A]=3* rate₁. So the rate would be 3 times faster.

b. How will the rate change if the concentration of A is halved?

If rate₁=k[A], then rate₂=k[$\frac{1}{2}$ A]= $(\frac{1}{2})^*$ k[A]= $\frac{1}{2}^*$ rate₁. So the rate would decrease. It would be one half of the original rate.

Department of Chemistry University of Texas at Austin

3. Three mechanisms for the reaction $NO_2(g) + CO(g) \rightarrow CO_2(g) + NO(g)$ have been proposed:

a.	Mechanism A	
	Step 1: NO ₂ (g) + CO(g) \rightarrow CO ₂ (g) + NO(g)	
b.	Mechanism B	
	Step 1: $NO_2(g) + NO_2(g) \rightarrow NO(g) + NO_3(g)$	(slow)
	Step 2: NO ₃ (g) + CO(g) \rightarrow CO ₂ (g) + NO ₂ (g)	(fast)
c.	Mechanism C	
	Step 1: NO ₂ (g) + NO ₂ (g) \rightarrow NO(g) + NO ₃ (g)	(fast, equilibrium)
	Step 2: NO ₃ (g) + CO(g) \rightarrow CO ₂ (g) + NO ₂ (g)	(slow)

Which mechanism agrees with the following initial rate data:

Experiment number	Initial [NO2] (mol/L)	Initial [CO] (mol/L)	Initial Rate (M/s)
1	0.133	0.074	0.144
2	0.399	0.074	1.296
3	0.133	0.370	0.144

These types of problems can be tackled in a three steps

• <u>Step 1</u>: What is the rate law that matches up with the initial rate data given?

We see that when we triple the NO₂ concentration, the rate is 9 times greater. This means the reaction is second order with respect to NO₂. We see that when we increase the concentration of CO by 5 times, the rate does not change. This means the reaction is zero order with respect to CO. Thus, the experimental rate law is rate= $k[NO_2]^2$

• <u>Step 2</u>: What are the rate laws of the proposed mechanisms?

Mechanism A: rate= $k_a[NO_2][CO]$ Mechanism B: rate = $k_b[NO_2]^2$ Mechanism C: rate= $k_c[NO_3][CO]$ (We do not need to solve this further to eliminate the intermediates because we know that [CO] is not in the experimental rate law. Thus, this mechanism does not agree with the experimental data.)

• <u>Step 3:</u> Which mechanism matches up with the experimental rate law?

The rate law for mechanism B and the experimental rate law match up. So, mechanism B agrees with the initial rate data.

Name:___

Department of Chemistry University of Texas at Austin

4. Three mechanisms for the reaction $O_2(g) + 2 \operatorname{NO}(g) \rightarrow 2 \operatorname{NO}_2(g)$ have been proposed:

a.	Mechanism A	
	Step 1: $O_2(g) + NO(g) \rightarrow NO_3(g)$	(fast, equilibrium)
	Step 2: NO ₃ (g) + NO(g) \rightarrow NO ₂ (g) + NO ₂ (g)	(slow)
b.	Mechanism B	
	Step 1: NO(g) + NO(g) \rightarrow N ₂ O ₂ (g)	(slow)
	Step 2: $O_2(g) + N_2O_2(g) \rightarrow N_2O_4(g)$	(fast)
	Step 3: $N_2O_4(g) \rightarrow NO_2(g) + NO_2(g)$	(fast)

Which mechanism agrees with the following initial rate data:

Experiment number	Initial [O2] (mol/L)	Initial [NO] (mol/L)	Initial Rate (M/s)
1	0.210	0.122	0.136
2	0.420	0.122	0.272
3	0.210	0.244	0.544

- <u>Step 1:</u> What is the rate law that matches up with the initial rate data given? rate=k[O₂][NO]²
- <u>Step 2</u>: What are the rate laws of the proposed mechanisms?

Mechanism A: rate_a=k_a[O₂][NO₂]² because

rate_{slow}= k_{slow} [NO][NO₃] and $K_{step1} = \frac{[NO_3]}{[O_2]*[NO]}$ so [NO₃] = K_{step1} [O₂][NO] so rate_a= k_a [O₂][NO]² where $k_a = k_{slow}* K_{step1}$)

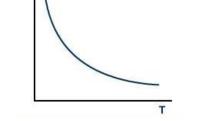
Mechanism B: $rate_b = k_b[NO]^2$

• <u>Step 3:</u> Which mechanism matches up with the experimental rate law?

The rate law for mechanism A and the experimental rate law match up. So, mechanism A agrees with the initial rate data.

Revised CR 1/16/14

Department of Chemistry University of Texas at Austin


Going from rate laws to the integrated rate equations

5. The rate law for the reaction $C_4H_9Cl + H_2O \rightarrow C_4H_9OH + HCl$ is rate = k[C₄H₉Cl]. a. What would the integrated rate equation look like for this reaction?

 $[C_4H_9Cl](t) = [C_4H_9Cl]_0^*e^{-kt}$

b. How would a plot of this equation look?

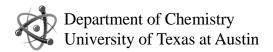
It would be an exponential decay graph similar to

c. How could you find k from the plot?

To find k, you would need to plot $\ln([C_4H_9Cl](t))$ vs. t (time). This will a straight line with the equation, $\ln([C_4H_9Cl](t)) = \ln[C_4H_9Cl]_0 - kt$. Thus, the slope = -k, so k = -slope.

- 6. The rate law for the reaction $2 \text{ NO}_2 \rightarrow 2 \text{ NO} + \text{O}_2$ is rate = $k[\text{NO}_2]^2$.
 - a. What would the integrated rate equation look like for this reaction?

 $\frac{1}{[NO_2](t)} = \frac{1}{[NO_2]_o} + kt$


b. How would a plot of this equation look?

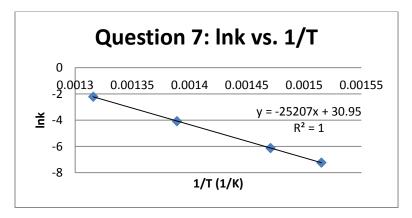
A plot of $\frac{1}{[NO_2](t)}$ vs. t (time), would be a straight line with the equation, $\frac{1}{[NO_2](t)} = \frac{1}{[NO_2]_0} + kt$

c. How could you find k from the plot?

With the above plot, slope = k, so k = slope.

Name:____

Activation Energy


7. Given the data below for the reaction of the decomposition of iodoethane into ethane and hydrogen iodide,

T (K)	k (s ⁻¹)
660	7.2 * 10-4
680	2.2 * 10-3
720	1.7 * 10-2
760	0.11

a. Calculate the activation energy for the reaction.

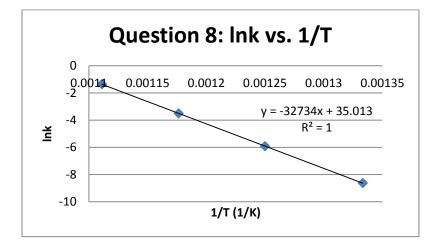
These types of problems can be tackled in a two steps

• <u>Step 1:</u> Make an Arrhenius plot, lnk vs. 1/T To make an Arrhenius plot, you need to enter this data into an excel spreadsheet, have excel calculate lnk and 1/T, make a scatterplot of lnk vs. 1/T and finally have excel display the trendline and its equation.

• <u>Step 2</u>: Calculate E_a using the slope of the line You need the Arrhenius plot because it gives you the line which has the generic equation $\ln k = \ln A - \left(\frac{E_a}{R}\right) \left(\frac{1}{T}\right)$.

So, the slope of the line in your plot is equal to $-\frac{E_a}{R}$. So, $E_a = \text{slope}^*(-R)$. Thus, $E_a = \text{slope}^*(-R) = (-25207 \text{ K})(-8.314 \text{ J K}^{-1} \text{ mol}^{-1}) = 2.1*10^5 \text{ J/mol} = 2.1*10^2 \text{ kJ/mol}$.

b. What is the value of the rate constant at 400 °C?


400 °C = 673 K So, lnk=lnA- $\left(\frac{E_a}{R}\right)\left(\frac{1}{T}\right)$ = 30.95 -25207 $\left(\frac{1}{673}\right)$ = -6.5047 So, k = e^{-6.5047}= 0.0015 = 1.5 *10⁻³ s⁻¹

8. Given the data below for the reaction of the conversion of cyclopropane into propene,

Т (К)	k (s ⁻¹)
750	1.8 * 10-4
800	2.7 * 10-3
850	3.0 * 10-2
900	0.26

- a. Calculate the activation energy for the reaction.
- <u>Step 1:</u> Make an Arrhenius plot, lnk vs. 1/T

• <u>Step 2</u>: Calculate E_a using the slope of the line

 $E_a = slope^{(-R)} = (-32734 \text{ K})(-8.314 \text{ J K}^{-1} \text{ mol}^{-1}) = 2.7*10^5 \text{ J/mol} = 2.7*10^2 \text{ kJ/mol}.$

b. What is the value of the rate constant at 600 °C?

600 °C = 873 K So, lnk=lnA- $\left(\frac{E_a}{R}\right)\left(\frac{1}{T}\right)$ = 35.01 - 32734 $\left(\frac{1}{873}\right)$ = -2.4860 So, k = e^{-2.4860}= 0.083 = 8.3 *10⁻² s⁻¹