Department of Chemistry University of Texas at Austin

<u>Kinetics Practice – Supplemental Worksheet</u>

Determining reaction mechanism based on initial rate data

- 1. A reaction has the experimental rate law, rate = $k[A]^2$.
 - a. How will the rate change if the concentration of a is tripled?
 - b. How will the rate change if the concentration of A is halved?
- 2. A reaction has the experimental rate law, rate = k[A].
 - a. How will the rate change if the concentration of a is tripled?
 - b. How will the rate change if the concentration of A is halved?
- 3. Three mechanisms for the reaction $NO_2(g) + CO(g) \rightarrow CO_2(g) + NO(g)$ have been proposed:

a.	Mechanism A	
	Step 1: $NO_2(g) + CO(g) \rightarrow CO_2(g) + NO(g)$	
b.	Mechanism B	
	Step 1: $NO_2(g) + NO_2(g) \rightarrow NO(g) + NO_3(g)$	(slow)
	Step 2: $NO_3(g) + CO(g) \rightarrow CO_2(g) + NO_2(g)$	(fast)
c.	Mechanism C	
	Step 1: $NO_2(g) + NO_2(g) \rightarrow NO(g) + NO_3(g)$	(fast, equilibrium)
	Step 2: $NO_3(g) + CO(g) \rightarrow CO_2(g) + NO_2(g)$	(slow)

Which mechanism agrees with the following initial rate data:

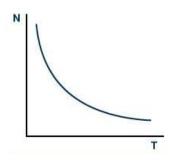
Experiment number	Initial [NO2] (mol/L)	Initial [CO] (mol/L)	Initial Rate (M/s)
1	0.133	0.074	0.144
2	0.399	0.074	1.296
3	0.133	0.370	0.144

- 4. Three mechanisms for the reaction $O_2(g) + 2 NO(g) \rightarrow 2 NO_2(g)$ have been proposed:
 - a. Mechanism A Step 1: $O_2(g) + NO(g) \rightarrow NO_3(g)$ (fast, equilibrium) Step 2: $NO_3(g) + NO(g) \rightarrow NO_2(g) + NO_2(g)$ (slow) b. Mechanism B

Name:

Step 1: NO(g) + NO(g) \rightarrow N ₂ O ₂ (g)	(slow)
Step 2: $O_2(g) + N_2O_2(g) \rightarrow N_2O_4(g)$	(fast)
Step 3: $N_2O_4(g) \rightarrow NO_2(g) + NO_2(g)$	(fast)

Which mechanism agrees with the following initial rate data:

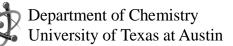

Experiment number	Initial [O2] (mol/L)	Initial [NO] (mol/L)	Initial Rate (M/s)
1	0.210	0.122	0.136
2	0.420	0.122	0.272
3	0.210	0.244	0.544

Going from rate laws to the integrated rate equations

Department of Chemistry

University of Texas at Austin

- 5. The rate law for the reaction $C_4H_9Cl + H_2O \rightarrow C_4H_9OH + HCl$ is rate = k[C_4H_9Cl]. a. What would the integrated rate equation look like for this reaction?
 - b. How would a plot of this equation look?



- c. How could you find k from the plot?
- 6. The rate law for the reaction $2 \text{ NO}_2 \rightarrow 2 \text{ NO} + \text{O}_2$ is rate = $k[\text{NO}_2]^2$.
 - a. What would the integrated rate equation look like for this reaction?
 - b. How would a plot of this equation look?
 - c. How could you find k from the plot?

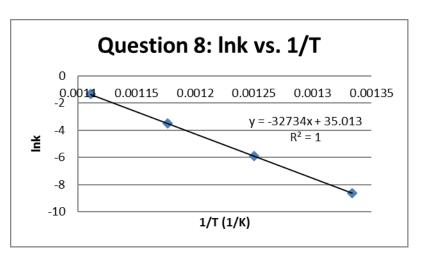
Activation Energy

7. Given the data below for the reaction of the decomposition of iodoethane into ethane and hydrogen iodide,

T (K)	k (s ⁻¹)
660	7.2 * 10-4
680	2.2 * 10-3

720	1.7 * 10-2
760	0.11

a. Calculate the activation energy for the reaction.



- b. What is the value of the rate constant at 400 °C?
- 8. Given the data below for the reaction of the conversion of cyclopropane into propene,

T (K)	k (s·1)
750	1.8 * 10-4
800	2.7 * 10-3
850	3.0 * 10-2
900	0.26

a. Calculate the activation energy for the reaction.

b. What is the value of the rate constant at 600 °C?