Balancing REDOX Reactions: Learn and Practice - KEY

Are these reactions are REDOX reactions? If yes, then balance the reaction using the half-reaction method.

1.
$$\underline{2}$$
Au³⁺ (aq) + $\underline{6}$ I⁻ (aq) $\rightarrow \underline{2}$ Au (s) + $\underline{3}$ I₂ (s)

To balance elements: Insert coefficients.

Oxidation $\frac{1}{2}$ reaction: $2I^{-} \rightarrow I_{2}$

Reduction ½ reaction: Au³+ → Au

To balance charge: Add electrons.

Oxidation ½ reaction: $2I^- \rightarrow I_2 + 2e^-$

Reduction ½ reaction: Au³⁺ + 3e⁻ → Au

To balance electrons: Multiply by coefficients.

Oxidation $\frac{1}{2}$ reaction: $3x(2I^{-} \rightarrow I_2 + 2e^{-})$

New Oxidation $\frac{1}{2}$ reaction: $6I^- \rightarrow 3I_2 + 6e^-$

Reduction ½ reaction: $2x(Au^{3+} + 3e^{-} \rightarrow Au)$

New Reduction $\frac{1}{2}$ reaction: $2Au^{3+} + 6e^{-} \rightarrow 2Au$

Combine:

Oxidation $\frac{1}{2}$ reaction: $6I^- \rightarrow 3I_2 + 6e^-$

Reduction $\frac{1}{2}$ reaction: $+2Au^{3+} + 6e^{-} \rightarrow 2Au$

Combined Balanced Equation: $6I^- + 2Au^{3+} \rightarrow 3I_2 + 2Au$

2. Cu (s) +
$${}^{2}Ag^{+}$$
 (aq) \rightarrow Cu²⁺ (aq) + ${}^{2}Ag$ (s)

To balance elements: Insert coefficients.

Oxidation ½ reaction: Cu → Cu²⁺

Reduction $\frac{1}{2}$ reaction: Ag⁺ \rightarrow Ag

To balance charge: Add electrons.

Oxidation $\frac{1}{2}$ reaction: Cu \rightarrow Cu²⁺ + 2e⁻

Reduction $\frac{1}{2}$ reaction: Ag⁺ + 1e⁻ \rightarrow Ag

To balance electrons: Multiply by coefficients.

Oxidation
$$\frac{1}{2}$$
 reaction: Cu \rightarrow Cu²⁺ + 2e⁻

Reduction ½ reaction:
$$2x(Ag^+ + 1e^- \rightarrow Ag)$$

New Reduction
$$\frac{1}{2}$$
 reaction: $2Ag^+ + 2e^- \rightarrow 2Ag$

Combine:

Oxidation ½ reaction:
$$Cu \rightarrow Cu^{2+} + 2e^{-}$$

Reduction
$$\frac{1}{2}$$
 reaction: $+2Ag^{+} + 2e^{-} \rightarrow 2Ag$

Combined Balanced Equation:
$$Cu + 2Ag^+ \rightarrow Cu^{2+} + 2Ag$$

3.
$$\underline{\hspace{0.1cm}}$$
 BaSO₃ (s) \rightarrow $\underline{\hspace{0.1cm}}$ BaO (s) + $\underline{\hspace{0.1cm}}$ SO₂ (g)

NOT A REDOX REACTION. Also, it is already balanced:)

Balance the following reactions using the half-reaction method in an *acidic* solution.

1.
$$\frac{3}{2}$$
NbO₂ + $\frac{2}{2}$ W + $\frac{2H_2O}{2}$ $\rightarrow \frac{3}{2}$ Nb + $\frac{2}{2}$ WO₄²⁻ + $\frac{4H^+}{2}$

To balance elements (other than O and H): Insert coefficients.

Oxidation
$$\frac{1}{2}$$
 reaction: W \rightarrow WO₄²

To balance oxygens: Add water.

Oxidation ½ reaction:
$$4H_2O + W \rightarrow WO_4^{2}$$

Reduction ½ reaction:
$$NbO_2 \rightarrow Nb + 2H_2O$$

To balance hydrogens: Add H⁺ (since we're in acidic solutions).

Oxidation
$$\frac{1}{2}$$
 reaction: $4H_2O + W \rightarrow WO_4^{2-} + 8H^+$

Reduction ½ reaction:
$$4H^+ + NbO_2 \rightarrow Nb + 2H_2O$$

To balance charge: Add electrons.

Oxidation ½ reaction:
$$4H_2O + W \rightarrow WO_4^{2-} + 8H^+ + 6e^-$$

Reduction
$$\frac{1}{2}$$
 reaction: $4e^- + 4H^+ + NbO_2 \rightarrow Nb + 2H_2O$

To balance electrons: Multiply by coefficients.

Oxidation
$$\frac{1}{2}$$
 reaction: $2x(4H_2O + W \rightarrow WO_4^{2} + 8H^+ + 6e^-)$

New Oxidation $\frac{1}{2}$ reaction: $8H_2O + 2W \rightarrow 2WO_4^{2} + 16H^+ 12e^-$

Reduction ½ reaction: $3x(4e^- + 4H^+ + NbO_2 \rightarrow Nb + 2H_2O)$

New Reduction $\frac{1}{2}$ reaction: $12e^{-} + 12H^{+} + 3NbO_{2} + 12e^{-} \rightarrow 3Nb + 6H_{2}O$

Combine:

$$8H_2O + 2W \rightarrow 2WO_4^{2-} + 16H^+ 12e^-$$

Reduction
$$\frac{12 e^{-} + 12H^{+} + 3NbO_{2} + 12e^{-} \rightarrow 3Nb + 6H_{2}O}{}$$

Combined Balanced Equation: $3\text{NbO}_2 + 2\text{W} + 2\text{H}_2\text{O} \rightarrow 2\text{WO}_4^{2-} + 3\text{Nb} + 4\text{H}^+$

2.
$$\underline{5}C_2H_5OH$$
 (aq) + $\underline{4}MnO_4^-$ (aq) + $\underline{12H}^+$ $\rightarrow \underline{4}Mn^{2+}$ (aq) + $\underline{5}CH_3COOH$ (aq) + $\underline{11H_2O}$

Here the assignment of oxidation numbers can be challenging. Refer to the following diagrams for the assignment of oxidation numbers on the hydrocarbons!

Ethanol:

Acetic Acid:

To balance elements (other than O and H): Insert coefficients.

Oxidation ½ reaction: $C_2H_5OH \rightarrow CH_3COOH$

Reduction ½ reaction: $MnO_4^- \rightarrow Mn^{2+}$

To balance oxygens: Add water.

Oxidation $\frac{1}{2}$ reaction: $H_2O + C_2H_5OH \rightarrow CH_3COOH$

Reduction $\frac{1}{2}$ reaction: $MnO_4^- \rightarrow Mn^{2+} + 4H_2O$

To balance hydrogens: Add H⁺ (since we're in acidic solutions).

Oxidation $\frac{1}{2}$ reaction: $H_2O + C_2H_5OH \rightarrow CH_3COOH + 4H^+$

Reduction ½ reaction: $8H^+ + MnO_4^- \rightarrow Mn^{2+} + 4H_2O$

To balance charge: Add electrons.

Oxidation $\frac{1}{2}$ reaction: $H_2O + C_2H_5OH \rightarrow CH_3COOH + 4H^+ + 4e^-$

Reduction ½ reaction: $8H^+ + MnO_4^- + 5e^- \rightarrow Mn^{2+} + 4H_2O$

To balance electrons: Multiply by coefficients.

Oxidation ½ reaction: $5x(H_2O + C_2H_5OH \rightarrow CH_3COOH + 4H^+ + 4e^-)$

New Oxidation ½ reaction: 5H₂O + 5C₂H₅OH → 5CH₃COOH + 20H⁺ + 20e⁻

Reduction ½ reaction: $4x(8H^+ + MnO_4^- + 5e^- \rightarrow Mn^{2+} + 4H_2O)$

New Reduction $\frac{1}{2}$ reaction: $32H^+ + 4MnO_4^- + 20e^- \rightarrow 4Mn^{2+} + 16H_2O$

Combine:

Oxidation ½ reaction: $5H_2O + 5C_2H_5OH \rightarrow 5CH_3COOH + 20H^+ + 20e^-$

Reduction $\frac{1}{2}$ reaction: $+32H^{+} + 4MnO_{4}^{-} + 20e^{-} \rightarrow 4Mn^{2+} + 16H_{2}O$

Combined Balanced Equation: $12H^+ + 5C_2H_5OH + 4MnO_4^- \rightarrow 5CH_3COOH + 4Mn^{2+} + 11H_2O$

3. $\text{ClO}^- + \underline{2}\text{ZnO} + \underline{6}\underline{\text{H}}^+ \rightarrow \text{Cl}^- + \underline{2}\text{Zn}^{3+} + \underline{3}\underline{\text{H}}_{\underline{2}}\underline{\text{O}}$

To balance elements (other than O and H): Insert coefficients.

Oxidation $\frac{1}{2}$ reaction: ZnO \rightarrow Zn³⁺

Reduction ½ reaction: ClO⁻ → Cl⁻

To balance oxygens: Add water.

Oxidation ½ reaction: $ZnO \rightarrow Zn^{3+} + H_2O$

Reduction $\frac{1}{2}$ reaction: ClO⁻ \rightarrow Cl⁻ + H₂O

To balance hydrogens: Add H⁺ (since we're in acidic solutions).

Oxidation $\frac{1}{2}$ reaction: $2H^+ + ZnO \rightarrow Zn^{3+} + H_2O$

Reduction ½ reaction: $2H^+ + ClO^- \rightarrow Cl^- + H_2O$

To balance charge: Add electrons.

Oxidation $\frac{1}{2}$ reaction: $2H^+ + ZnO \rightarrow Zn^{3+} + H_2O + 1e^-$

Reduction ½ reaction: $2H^+ + ClO^- + 2e^- \rightarrow Cl^- + H_2O$

To balance electrons: Multiply by coefficients.

Oxidation ½ reaction: $2x(2H^+ + ZnO \rightarrow Zn^{3+} + H_2O + 1e^-)$

New Oxidation $\frac{1}{2}$ reaction: $4H^+ + 2ZnO \rightarrow 2Zn^{3+} + 2H_2O + 2e^-$

Reduction $\frac{1}{2}$ reaction: $2H^+ + ClO^- + 2e^- \rightarrow Cl^- + H_2O$

Combine:

Oxidation $\frac{1}{2}$ reaction: $4H^+ + 2ZnO \rightarrow 2Zn^{3+} + 2H_2O + 2e^-$

Reduction ½ reaction: $+2H^+ + ClO^- + 2e^- \rightarrow Cl^- + H_2O$

Combined Balanced Equation: $6H^+ + 2ZnO + ClO^- \rightarrow 2Zn^{3+} + Cl^- + 3H_2O$

Balance the following reactions using the half-reaction method in a *basic* solution.

1.
$$\frac{2NH_3 + 2ClO}{}$$
 $\rightarrow \frac{1N_2H_2 + 2Cl}{} + \frac{2H_2O}{}$

To balance elements (other than O and H): Insert coefficients.

Oxidation $\frac{1}{2}$ reaction: $2NH_3 \rightarrow N_2H_2$

Reduction ½ reaction: ClO⁻ → Cl⁻

To balance oxygens: Add water.

Oxidation $\frac{1}{2}$ reaction: $2NH_3 \rightarrow N_2H_2$

Reduction $\frac{1}{2}$ reaction: ClO⁻ \rightarrow Cl⁻ + H₂O

To balance hydrogens: Add H⁺.

Oxidation ½ reaction: $2NH_3 \rightarrow N_2H_2 + 4H^+$

Reduction $\frac{1}{2}$ reaction: $2H^+ + ClO^- \rightarrow Cl^- + H_2O$

BUT it is a BASIC solution. Add OH to BOTH sides (enough to combine with all H)

Oxidation $\frac{1}{2}$ reaction: $4OH^- + 2NH_3 \rightarrow N_2H_2 + 4H^+ + 4OH^-$

Combine to make water: $4OH^- + 2NH_3 \rightarrow N_2H_2 + 4H_2O$

Reduction $\frac{1}{2}$ reaction: $2OH^- + 2H^+ + ClO^- \rightarrow Cl^- + H_2O + 2OH^-$

Combine to make water: $2H_2O + ClO^- \rightarrow Cl^- + H_2O + 2OH^-$

Cancel any waters on both sides: $H_2O + ClO^- \rightarrow Cl^- + 2OH^-$

To balance charge: Add electrons.

Oxidation $\frac{1}{2}$ reaction: $4OH^- + 2NH_3 \rightarrow N_2H_2 + 4H_2O + 4e^-$

Reduction ½ reaction: $2e^- + H_2O + ClO^- \rightarrow Cl^- + 2OH^-$

To balance electrons: Multiply by coefficients.

Oxidation $\frac{1}{2}$ reaction: $4OH^- + 2NH_3 \rightarrow N_2H_2 + 4H_2O + 4e^-$

Reduction ½ reaction: $2x(2e^- + H_2O + ClO^- \rightarrow Cl^- + 2OH^-)$

NEW Reduction $\frac{1}{2}$ reaction: $2H_2O + 2CIO^- + 4e^- \Rightarrow 2CI^- + 4OH^-$

Combine:

Oxidation $\frac{1}{2}$ reaction: $4OH^- + 2NH_3 \rightarrow N_2H_2 + 4H_2O + 4e^-$

Reduction $\frac{1}{2}$ reaction: $+ 2H_2O + 2ClO^- + 4e^- \rightarrow 2Cl^- + 4OH^-$

Combined Balanced Equation:

 $2\mathrm{NH_3} + 2\mathrm{ClO}^- \rightarrow 2\mathrm{Cl}^- + \mathrm{N_2H_2} + 2\mathrm{H_2O}$

2. Fe + NiO₂ + $2H_2O$ \rightarrow Fe(OH)₂ + Ni(OH)₂

To balance elements (other than O and H): Insert coefficients.

Oxidation $\frac{1}{2}$ reaction: Fe \rightarrow Fe(OH)₂

Reduction $\frac{1}{2}$ reaction: $NiO_2 \rightarrow Ni(OH)_2$

To balance oxygens: Add water.

Oxidation $\frac{1}{2}$ reaction: Fe + 2H₂O \rightarrow Fe(OH)₂

Reduction $\frac{1}{2}$ reaction: NiO₂ \rightarrow Ni(OH)₂

To balance hydrogens: Add H⁺.

Oxidation ½ reaction: Fe + $2H_2O \rightarrow Fe(OH)_2 + 2H^+$

Reduction $\frac{1}{2}$ reaction: NiO₂ + 2H⁺ \rightarrow Ni(OH)₂

BUT it is a BASIC solution. Add OH to BOTH sides (enough to combine with all H)

Oxidation $\frac{1}{2}$ reaction: Fe + $2H_2O + 2OH^- \rightarrow Fe(OH)_2 + 2H^+ + 2OH^-$

Combine H⁺ and OH⁻: Fe + $2H_2O$ + 2OH⁻ \rightarrow Fe(OH)₂ + $2H_2O$

Cancel Extra $H_2O: \mathbf{Fe} + \mathbf{2OH} \rightarrow \mathbf{Fe}(\mathbf{OH})_2$

Reduction $\frac{1}{2}$ reaction: NiO₂ + 2H⁺ + 2OH⁻ \rightarrow Ni(OH)₂ + 2OH⁻

Combine H⁺ and OH⁻: NiO₂ + 2H₂O \rightarrow Ni(OH)₂ + 2OH⁻

Cancel Extra $H_2O: NiO_2 + 2H_2O \rightarrow Ni(OH)_2 + 2OH^-$

To balance charge: Add electrons.

Oxidation $\frac{1}{2}$ reaction: Fe + 2OH⁻ \rightarrow Fe(OH)₂ + 2e⁻

Reduction ½ reaction: $NiO_2 + 2H_2O + 2e^- \rightarrow Ni(OH)_2 + 2OH^-$

To balance electrons: Multiply by coefficients.

Not necessary! 2e⁻ are already on either side!

Combine:

Oxidation $\frac{1}{2}$ reaction: Fe + 2OH⁻ \rightarrow Fe(OH)₂ + 2e⁻

Reduction ½ reaction: $+ \text{NiO}_2 + 2\text{H}_2\text{O} + 2\text{e}^- \rightarrow \text{Ni(OH)}_2 + 2\text{OH}^-$

Combined Balanced Equation: Fe + $2H_2O + NiO_2 \rightarrow Ni(OH)_2 + Fe(OH)_2$

3. $2MnO_4^- + 3CN^- + H_2O$ $\rightarrow 2MnO_2 + 3CNO^- + 2OH^-$

To balance elements (other than O and H): Insert coefficients.

Oxidation ½ reaction: CN⁻ → CNO⁻

Reduction ½ reaction: MnO_4 \rightarrow MnO_2

To balance oxygens: Add water.

Oxidation $\frac{1}{2}$ reaction: $CN^{-} + H_2O \rightarrow CNO^{-}$

Reduction $\frac{1}{2}$ reaction: MnO₄ \rightarrow MnO₂ + 2H₂O

To balance hydrogens: Add H⁺.

Oxidation $\frac{1}{2}$ reaction: $CN^{-} + H_2O \rightarrow CNO^{-} + 2H^{+}$

Reduction $\frac{1}{2}$ reaction: $MnO_4^- + 4H^+ \rightarrow MnO_2 + 2H_2O$

BUT it is a BASIC solution. Add OH to BOTH sides (enough to combine with all H⁺)

Oxidation $\frac{1}{2}$ reaction: $CN^{-} + H_2O + 2OH^{-} \rightarrow CNO^{-} + 2H^{+} + 2OH^{-}$

Combine H⁺ and OH⁻: $CN^{-} + H_2O + 2OH^{-} \rightarrow CNO^{-} + 2H_2O$

Cancel Extra $H_2O: CN^- + 2OH^- \rightarrow CNO^- + H_2O$

Reduction ½ reaction: $MnO_4^- + 4H^+ + 4OH^- \rightarrow MnO_2 + 2H_2O + 4OH^-$

Combine H⁺ and OH⁻: MnO_4 + $4H_2O \rightarrow MnO_2$ + $2H_2O$ + $4OH^-$

Cancel Extra $H_2O: \mathbf{MnO_4}^{-} + 2H_2O \rightarrow \mathbf{MnO_2} + 4OH^{-}$

To balance charge: Add electrons.

Oxidation $\frac{1}{2}$ reaction: $CN^{-} + 2OH^{-} \rightarrow CNO^{-} + H_{2}O + 2e^{-}$

Reduction $\frac{1}{2}$ reaction: MnO₄ + 2H₂O + 3e⁻ \rightarrow MnO₂ + 4OH⁻

To balance electrons: Multiply by coefficients.

Oxidation $\frac{1}{2}$ reaction: $3x(CN^{-} + 2OH^{-} \rightarrow CNO^{-} + H_{2}O + 2e^{-})$

New Oxidation $\frac{1}{2}$ reaction: $3\text{CN}^- + 6\text{OH}^- \rightarrow 3\text{CNO}^- + 3\text{H}_2\text{O} + 6\text{e}^-$

Reduction $\frac{1}{2}$ reaction: $2x(MnO_4^- + 2H_2O + 3e^- \rightarrow MnO_2 + 4OH^-)$

New Reduction $\frac{1}{2}$ reaction: $2MnO_4 + 4H_2O + 6e^- \rightarrow 2MnO_2 + 8OH^-$

Combine: $3CN^{-} + 6OH^{-} \rightarrow 3CNO^{-} + 3H_{2}O + 6e^{-}$

 $+ 2MnO_4^- + 4H_2O + 6e^- \rightarrow 2MnO_2 + 8OH^-$

Combined Balanced Equation: $3CN^2 + 2MnO_4^2 + H_2O \rightarrow 3CNO^2 + 2MnO_2 + 2OH^2$