\qquad

Preparation for Buffer Problems - Supplemental Worksheet KEY

Review of Conjugate Acid/Base Pairs

Problem \#1: Conjugate acid/base pairs are important to salts and buffers. Complete the following table to practice identifying conjugate acid/base pairs:

Item	Brønsted-Lowry acid or base?	Conjugate partner
Hydronium ion	$\mathrm{H}_{3} \mathrm{O}^{+}$, acid	Water, $\mathrm{H}_{2} \mathrm{O}$
Cyanide	CN^{-}, base	Hydrogen cyanide, HCN
Hydroxide	OH^{-}, base	Water, $\mathrm{H}_{2} \mathrm{O}$
Ammonium ion	$\mathrm{NH}_{4}{ }^{+}$, acid	Ammonia, NH_{3}
$\mathrm{Nitrite}^{\mathrm{NO}_{2}-\text {, base }}$	Nitrous acid, HNO_{2}	
$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}{ }^{* *}$	Dihydrogen phosphate ion, acid and base	HPO_{4}^{2-}, base $\mathrm{H}_{3} \mathrm{PO}_{4}$, acid
OCl^{-}	Hypochlorite ion, base	Hypochlorous acid, HClO
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$	Aniline, base	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}$
$\mathrm{CH}_{3} \mathrm{NH}_{2}$	Methylamine, base	$\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}$
$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}($ pyridine	Pyridine, base	$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}$

Problem \#2: Equilibrium Constants. For each base below, write the reaction for which $\mathrm{Kc}=\mathrm{Kb}$. In other words, write the reaction for the base ionizing in water.
a. Ammonia, $\mathrm{K}_{\mathrm{b}}=1.8 \bullet 10^{-5}$

$$
\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}
$$

b. Aniline $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}\right), \mathrm{K}_{\mathrm{b}}=4.2 \cdot 10^{-10}$

$$
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}^{+}+\mathrm{OH}^{-}
$$

c. Dimethylamine $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}, \mathrm{K}_{\mathrm{b}}=7.4 \bullet 10^{-4}$

$$
\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{2}^{+}+\mathrm{OH}^{-}
$$

d. Hydroxylamine $\mathrm{NH}_{2} \mathrm{OH}, \mathrm{K}_{\mathrm{b}}=6.6 \bullet 10^{-9}$

$$
\mathrm{NH}_{2} \mathrm{OH}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{3} \mathrm{OH}^{+}+\mathrm{OH}^{-}
$$

e. Trimethylamine $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}, \mathrm{~K}_{\mathrm{b}}=7.4 \bullet 10^{-5}$

$$
\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}^{+}+\mathrm{OH}^{-}
$$

\qquad

Problem \#3: For each base above, write its conjugate acid in the corresponding blank, then calculate its pK_{a}. The first is done for you. (Doing the Lewis Dot diagram can sometimes help with these. Looking at a Kb table can also help.)

Base	Conj Acid	$\mathbf{K}_{\mathbf{b}}$	$\mathbf{K}_{\mathbf{a}}$	$\mathbf{p K}_{\mathbf{a}}$
NH_{3}	$\mathrm{NH}_{4}{ }^{+}$	$1.8 \cdot 10^{-5}$	$5.5 \cdot 10^{-10}$	9.3
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{3}{ }^{+}$	$4.2 \cdot 10^{-10}$	$2.4 \bullet 10^{-5}$	4.62
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{2}{ }^{+}$	$7.4 \cdot 10^{-4}$	$1.35 \cdot 10^{-11}$	10.87
$\mathrm{NH}_{2} \mathrm{OH}$	$\mathrm{NH}_{3} \mathrm{OH}^{+}$	$6.6 \cdot 10^{-9}$	$1.5 \cdot 10^{-6}$	5.82
pyridine	$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}$	$7.4 \cdot 10^{-5}$	$1.35 \cdot 10^{-10}$	9.87

To calculate the K_{a}, the following equation is required:

$$
K_{a}=\frac{K_{w}}{K_{b}}
$$

Sample calculation for $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$

$$
K_{a}\left(C_{6} H_{5} N H_{2}\right)=\frac{K_{w}}{K_{b}\left(C_{6} H_{5} N H_{3}^{+}\right)}=\frac{1 \times 10^{-14}}{4.2 \times 10^{-10}}=2.4 \times 10^{-5}
$$

To calculate the pKa , the following equation is required:

$$
p K_{a}=-\log \left(K_{a}\right)
$$

Sample calculation for $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$

$$
p K_{a}\left(C_{6} H_{5} N H_{2}\right)=-\log \left(2.4 \times 10^{-5}\right)=4.62
$$

\qquad

Problem \#4: Le Chatelier's Principle. Each of the following actions affects the pH in what way?

System: $\quad \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \longleftrightarrow \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$

Change	Reaction shifts	At new Equilibrium, pH will
Adding more moles of acetic acid	Right, towards the products	pH with decrease because [H+] will increase since the reaction shifts towards the products
Adding $\mathrm{H}_{3} \mathrm{O}^{+}$	Left, towards the reactants	pH will decrease because [H+] will increase due to the addition of $\mathrm{H}_{3} \mathrm{O}^{+}$, the decrease in H+ ions from the rxn shifting left is negligible compared to the effect of adding the strong acid
Adding strong base	Right, towards the products	pH will increase because the OH- and H+ ions will neutralize and [H+] will decrease, the increase in H+ ions from the rxn shifting right is negligible compared to the effect of adding the strong base
Adding a small amount of a strong acid like HCl	Left, towards the reactants	pH with decrease because [H+] will increase due to the addition of H30 ${ }^{+}$, the decrease in H+ ions from the rxn shifting left is negligible compared to the effect of adding the strong acid
Adding sodium acetate	Left, towards the reactants	pH with increase because [H+] will decrease since the reaction shifts towards the reactants

Problem \#5: Challenge Calculation Problem. You locate a vial of formic acid and need to know its molarity. A pH meter measures its pH to be 2.70. Calculate the molarity of formic acid. ($\mathrm{Ka}=1.8 \mathrm{e}-4$)

Step 1:

$$
\begin{gathered}
p H=-\log \left[H^{+}\right] \\
{\left[H^{+}\right]=10^{-p H}=10^{-2.7}=2.00 \times 10^{-3} \mathrm{M}}
\end{gathered}
$$

Step 2:

R	HCOOH	$+\mathrm{H}_{2} \mathrm{O} \leftrightarrow$	$\mathrm{HCOO}^{-}+$	$\mathrm{H}_{3} \mathrm{O}^{+}$
I	X	---	0	0
C	$-2 \cdot 10^{-3}$	----	$+2 \bullet 10^{-3}$	$+2 \bullet 10^{-3}$
E	$\sim \mathrm{x}$	---	$2 \bullet 10^{-3}$	$2 \cdot 10^{-3}$

Step 3:

$$
K_{a}=\frac{\left[\mathrm{HCOO}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{[\mathrm{HCOOH}]}
$$

$$
[\mathrm{HCOOH}]=\frac{\left(2.00 \times 10^{-3}\right)^{2}}{1 \times 10^{-4}}=0.0221 \mathrm{M}
$$

*This problem is a "backwards" problem to the usual problem, however, the same steps are followed but in a different order. We fill in the information we know the RICE table as usual, except this time it is different information that we know.

Department of Chemistry
University of Texas at Austin
Name: \qquad
*For problem \#6, salts that form ions that are weak acids or bases produce H^{+}ions or OH- ions respectively and make acidic or basic solutions respectively.

Salts

Problem \#6: Before we continue to the next topic, you need to understand the effect of salts and ions in water. They influence pH . You need to know how to determine what influence they will have and what reactions will (and won't) occur. To practice, complete the following table. The first one is done for you.

Salt	Predicted salt type	Cation	Cation reaction w/ $\mathbf{H}_{2} \mathbf{O}$	Anion	Anion reaction w/ $\mathrm{H}_{2} \mathrm{O}$	Solution will become
NaI	Neutral	Na^{+}	$\begin{aligned} & \mathrm{Na}^{+}+\mathrm{H}_{2} \mathrm{O}<\mathrm{NaOH}+ \\ & \mathrm{H}^{+} \\ & \begin{array}{l} \text { Equil far left, so no } \mathrm{H}+ \\ \text { produced } \end{array} \\ & \hline \end{aligned}$	I-	$\mathrm{I}+\mathrm{H}_{2} \mathrm{O} \leftarrow \mathrm{HI}+\mathrm{OH}^{-}$ Equil far left, so no OH produced	Neutral
$\mathrm{NH}_{4} \mathrm{Br}$	Acidic	$\mathrm{NH}_{4}{ }^{+}$	$\begin{gathered} \mathrm{NH}_{4}++\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{NH}_{3}+ \\ \mathrm{H}_{3} \mathrm{O}^{+} \\ \text {Some } \mathrm{H}_{3} \mathrm{O}^{+} \text {produced } \end{gathered}$	Br^{-}	$\mathrm{Br}+\mathrm{H}_{2} \mathrm{O} \leftarrow \mathrm{HBr}+\mathrm{OH}$ Equil far left, so no OH^{-} produced	Acidic
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3} \mathrm{NO}_{3}$	Acidic	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}$	$\begin{gathered} \hline \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \\ \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}+\mathrm{H}_{3} \mathrm{O}^{+} \\ \mathrm{H}_{3} \mathrm{O}^{+} \text {produced } \\ \hline \end{gathered}$	$\mathrm{NO}_{3}{ }^{-}$	$\mathrm{NO}_{3}{ }^{-}+\mathrm{H}_{2} \mathrm{O} \leftarrow \mathrm{HNO}_{3}+\mathrm{OH}$ Equil far left, so no $\mathrm{OH}-$ produced	Acidic
NaOCl	Basic	Na^{+}	$\begin{gathered} \mathrm{Na}^{+}+\mathrm{H}_{2} \mathrm{O} \leftarrow \mathrm{NaOH}+ \\ \mathrm{H}^{+} \\ \text {No H}+ \text { produced } \\ \hline \end{gathered}$	OCl-	$\mathrm{OCl}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{HOCl}+\mathrm{OH}^{-}$ OH^{-}is produced	Basic
CaBr_{2}	Neutral	Ca^{2+}	$\begin{aligned} & \hline \mathrm{Ca}^{2+}+2 \mathrm{H}_{2} \mathrm{O} \leftarrow \\ & \mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{H}^{+} \\ & \text {No } \mathrm{H}^{+} \text {produced } \\ & \hline \end{aligned}$	Br-	$\mathrm{Br}+\mathrm{H}_{2} \mathrm{O} \leftarrow \mathrm{HBr}+\mathrm{OH}$ Equil far left, so no OH^{-} produced	Neutral
KNO_{2}	Basic	K^{+}	$\begin{gathered} \mathrm{K}^{+}+\mathrm{H}_{2} \mathrm{O} \leftarrow \mathrm{KOH}+\mathrm{H}^{+} \\ \quad \text { No } \mathrm{H}^{+} \text {produced } \end{gathered}$	$\mathrm{NO}_{2}{ }^{-}$	$\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{HNO}_{2}+\mathrm{OH}^{-}$ OH - is produced	Basic
$\mathrm{NH}_{4} \mathrm{ClO}_{4}$	Acidic	$\mathrm{NH}_{4}{ }^{+}$	$\begin{gathered} \mathrm{NH}_{4}++\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{NH}_{3}+ \\ \mathrm{H}_{3} \mathrm{O}^{+} \\ \text {Some } \mathrm{H}_{3} \mathrm{O}^{+} \text {produced } \\ \hline \end{gathered}$	$\mathrm{ClO}_{4}{ }^{-}$	$\begin{gathered} \mathrm{ClO}_{4}+\mathrm{H}_{2} \mathrm{O} \leftarrow \mathrm{HClO}_{4}+ \\ \mathrm{OH}^{-} \end{gathered}$ No OH- produced	Acidic
$\mathrm{NH}_{4} \mathrm{NO}_{2}$	Acidic	$\mathrm{NH}_{4}{ }^{+}$	$\begin{gathered} \mathrm{NH}_{4}^{+}+\underset{2}{\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{NH}_{3}+} \\ \mathrm{H}_{3} \mathrm{O}^{+} \end{gathered}$ H^{+}is produced	$\mathrm{NO}_{2}{ }^{-}$	$\mathrm{NO}_{2}^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{HNO}_{2}+\mathrm{OH}^{-}$ OH - is produced	Slightly Acidic*

Problem \#7: A few problems.
Circle the acidic salts from the following list: $\mathrm{CaCO}_{3}, \mathrm{NH}_{4} \mathrm{Cl}, \mathrm{NaNO}_{3}, \mathrm{KBr}, \mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$. For reasons similar to that above.
(Challenge) How does an acidic salt make pH more acidic (lower pH)?
\qquad

Acid salts dissociate into a weak acid and spectator ions. The weak acid then reaches its equilibrium which results in the production of some $\mathrm{H}+$ ions since it is an acid. The presence of $\mathrm{H}+$ ions makes the solution acid.

* H^{+}and OH^{-}is produced, but slightly more H^{+}is produced because $\mathrm{NH}_{4}{ }^{+}$is a slightly stronger weakacid than $\mathrm{NO}_{2}{ }^{-}$is of a weak base.

$$
K_{a}\left(\mathrm{NH}_{4}^{+}\right)=5.6 \times 10^{-10}>1.4 \times 10^{-11}=K_{b}\left(\mathrm{NO}_{2}^{-}\right)
$$

Calculate the pH of a 10.0 mM solution of ammonium chloride. pH is \qquad 5.6 \qquad

Step 0:
Recognize $10.0 \mathrm{mM}=0.010 \mathrm{M}$
Ammonium Chloride: $\mathrm{NH}_{4} \mathrm{Cl} \rightarrow \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$
Step 1:

R	$\mathrm{NH}_{4}{ }^{+}+$	$\mathrm{H}_{2} \mathrm{O}$	\leftrightarrow	NH_{3}	+	$\mathrm{H}_{3} \mathrm{O}^{+}$
I	0.01	----		0		0
C	-x	----		+x		+x
E	~ 0.01	----		x		x

(b/c x is so small)

Step 2:

$$
\begin{gathered}
K_{a}\left(\mathrm{NH}_{4}^{+}\right)=5.6 \times 10^{-10}=\frac{x^{2}}{0.01} \\
x=\sqrt{\left(5.6 \times 10^{-10}\right)(0.01)}=2.37 \times 10^{-6} \\
{\left[H^{+}\right]=2.37 \times 10^{-6}}
\end{gathered}
$$

Step 3:

$$
p H=-\log \left[H^{+}\right]=5.6
$$

Next, calculate the pH of a $0.13 \mathrm{M} \mathrm{NH}_{4} \mathrm{Br}$ solution. The pH is \qquad 5.07 \qquad .

Step 0:
Ammonium Bromide: $\mathrm{NH}_{4} \mathrm{Br} \rightarrow \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{Br}^{-}(\mathrm{aq})$
Step 1:

R	$\mathrm{NH}_{4}{ }^{+}+$	$\mathrm{H}_{2} \mathrm{O}$	\leftrightarrow	NH 3	+	$\mathrm{H}_{3} \mathrm{O}^{+}$
I	0.13	----		0		0
C	-x	----		+x		+x
E	~ 0.13	----		x		x

(b/c x is so small)

Step 2:

$$
\begin{gathered}
K_{a}\left(N H_{4}^{+}\right)=5.6 \times 10^{-10}=\frac{x^{2}}{0.01} \\
x=\sqrt{\left(5.6 \times 10^{-10}\right)(0.13)}=8.5 \times 10^{-6} \\
{\left[H^{+}\right]=8.5 \times 10^{-6}}
\end{gathered}
$$

\qquad

Step 3:

$$
p H=-\log \left[H^{+}\right]=5.07
$$

Neutralization Reactions

Problem \#8: Complete Ionic and Net ionic Equations. Identify the spectator ions for the reactions below. (One method is to write the balanced chemical reaction, then write the complete ionic reaction, then write the net ionic reaction. Recall that the complete ionic equation writes strong electrolytes as dissociated ions. Strong electrolytes are soluble salts, strong acids, strong bases.)
a. Sodium hydroxide reacts with hydrobromic acid Spectator ions are: Na^{+}and Br^{-}because OH^{-}and H^{+}react to form $\mathrm{H}_{2} \mathrm{O}$. These Na^{+}and Br^{-} remain in solution and do not react to form anything new.

$$
\begin{gathered}
\mathrm{NaOH}(s)+H B r(s) \rightarrow \\
\mathbf{N a}^{+}(\boldsymbol{a q})+\mathrm{OH}^{-}(\text {aq })+H^{+}(a q)+\boldsymbol{B r}^{-}(\boldsymbol{a q}) \rightarrow \\
\mathbf{N a B r}(\boldsymbol{a q})+\mathrm{H}_{2} \mathrm{O}(l)
\end{gathered}
$$

b. Sodium hydroxide reacts with nitrous acid

Spectator ions are: Na^{+}because Na^{+}is the only ion that never reacts to form something new like H 2) or HNO 2 like $\mathrm{H}^{+}, \mathrm{OH}^{-}$, and HNO_{2} ions. It just watches and stays in solution.

Step 1:

$$
\begin{gathered}
\mathrm{NaOH}(s)+\mathrm{HNO}_{2} \rightarrow \\
\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})+\mathrm{NO}_{2}^{-}(a q) \rightarrow \\
\mathrm{NaNO}_{2}(a q)+\mathrm{H}_{2} \mathrm{O}(l)
\end{gathered}
$$

Step 2:

$$
\mathrm{NaNO}_{2}(a q) \rightarrow \mathrm{Na}^{+}(a q)+\mathrm{NO}_{2}^{-}(a q)
$$

Step 3:

$$
\mathrm{NO}_{2}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{HNO}_{2}(a q)+\mathrm{OH}^{-}(a q)
$$

