Balancing Decay Practice – Supplemental Worksheet KEY
Balance the following nuclear reactions by putting in the missing nuclide or particle

\[\frac{4}{2}He + \frac{14}{7}N \rightarrow \frac{17}{8}O + \ ? \]

1. \(^{11}p \)

Total mass number is 28 (14+14), total charge number is 9 (2+7).
Missing on the right is mass number of 1 (28-27) and charge number of 1 (9-8).

\[\frac{4}{2}He + \frac{9}{4}Be \rightarrow \ ? + \frac{1}{0}n \]

2. \(^{12}_{6}C \)

Total mass number is 13 (4+9), total charge number is 6 (2+4).
Missing on the right is mass number of 12 (13-1) and charge number of 6 (6-0).

\[\frac{235}{92}U + \frac{1}{0}n \rightarrow \frac{144}{56}Ba + \ ? + 3\frac{1}{0}n \]

3. \(^{89}_{36}Kr \)

\[\frac{2}{1}D + \frac{3}{1}T \rightarrow \ ? + \frac{1}{0}n \]

4. \(^{4}_{2}He \)

\[\ ? \rightarrow \frac{234}{90}Th + \frac{4}{2}He \]

5. \(^{238}_{92}U \)

\[\frac{124}{53}I \rightarrow \frac{0}{1}\beta + \ ? \]

6. \(^{124}_{52}Te \)

\[\frac{197}{79}Au + \frac{1}{0}n \rightarrow \ ? \]

7. \(^{198}_{79}Au \)

\[\frac{6}{3}Li + \ ? \rightarrow \frac{2}{4}He \]

8. \(^{2}_{1}H \)
For the following predict the decay products

6. Alpha decay of Rn-222
\[^{222}_{86}\text{Rn} \rightarrow ^{218}_{84}\text{Po} + ^{4}_{2}\text{He} \]

Alpha decay produces and alpha particle \(^{4}_{2}\text{He}\). Lowering the mass number by 4 and the charge number by 2.

7. Beta minus decay of Pd-123
\[^{123}_{46}\text{Pd} \rightarrow ^{123}_{47}\text{Ag} + ^{0}_{-1}\text{e} \]

Beta(-) decay produces an electron. Lowering the mass number by 0 and increasing the charge number by 1.

8. Alpha decay of Cf-240
\[^{240}_{98}\text{Cf} \rightarrow ^{236}_{96}\text{Cm} + ^{4}_{2}\text{He} \]

9. Positron emission from C-11
\[^{11}_{6}\text{C} \rightarrow ^{11}_{5}\text{B} + ^{0}_{1}\text{e} \]

Positron emission produces a positron. Lowering the mass number by 0 and decreasing the charge number by 1.

10. Electron capture of Am-242
\[^{242}_{95}\text{Am} + ^{0}_{-1}\text{e} \rightarrow ^{242}_{94}\text{Pu} \]

Electron capture converts a proton to a neutron. Lowering the mass number by 0 and decreasing the charge number by 1.

11. Beta (-) decay of C-14
\[^{14}_{6}\text{C} \rightarrow ^{14}_{7}\text{N} + ^{0}_{-1}\text{e} \]

12. Beta(-) decay of Cs-137
\[^{137}_{55}\text{Cs} \rightarrow ^{137}_{56}\text{Ba} + ^{0}_{-1}\text{e} \]